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Summary	

•  Premature to conclude we have seen hurricane change due to CO2	


•  Models allow estimates of future activity:	

•  Next couple of decades: internal variability dominant player���

                (some may be predictable, some not)	


•  NA Hurr. Response to CO2: maybe fewer, probably stronger.	


•  Aerosol forcing and response a key to next few decades.	


•  Encouraging results from long-lead (multi-season and multi-year) 
experimental forecasts using hybrid system: ���
	
 	
“past performance no guarantee of future returns”���

 	
 	
but good past performance nice start…	


•  High-resolution coupled and atmospheric models enable the next 
generation of hurricane prediction and projection.	


	




Outline	


•  Historical hurricane records	


•  Projecting decadal to centennial hurricane activity	


•  Predicting seasonal hurricane activity	


•  Predicting multi-year hurricane activity	




Vecchi and Knutson (2008, J. Clim.)	

     Landsea et al. (2009, J. Clim.)	


     Vecchi and Knutson (2011, J. Clim.)���
Villarini et al. (2011, J. Clim.)	


Adjustments to storm counts 
based on ship/storm track 

locations and density	


Historical Hurricane Records	




U.S. Landfalling���
Hurricanes	


Basinwide	

Hurricanes	


Fraction of ���
Basinwide	

Hurricanes	

Making U.S.	


Landfall	


Vecchi and Knutson (2011, J. Clim.); Villarini et al. (2012, J. Clim.)	




Climatology ���
(what happens typically, including randomness)���

need good observations	

Evolution of initial conditions ���
(e.g., weather or El Niño forecast)���

need good observations, models, initialization schemes	

���

Climatology 	

Climate response to forcing ���

(e.g., CO2, aerosols, sun, volcanoes)���
need good models and estimates of forcing	


Sources of & Limitations on climate predictability	
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In each grid cell:	


★ conserve momentum 
(F=m·a)	


★ account for changes 
in mass and 
composition	


★ conserve energy
(radiation, latent, etc...)	


“Force” with solar radiation,���
structure of continents and���

atmospheric composition (e.g., CO2)	


Models have land, ocean, 
atmosphere and ice components.	


Each encapsulates our best 
understanding of underlying 
processes controlling its evolution.	




GCM Projections of 21st Century Changes in Large-Scale Environment	
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Vecchi and Soden (2007, Nature)	




But, current computing power limits ability of ���
coupled global climate models to represent hurricanes	


Hurricane Rita (2005): 
orange grid is 

representative of most 
current coupled global 

climate model resolution.	


Size of grid limited by 
power of computers.	




“Downscale” Climate Model Projections With High-Resolution or 
Statistical Models 	


Large-scale
Global Climate Models -> High-resolution Model 

TS Frequency



Downscaling techniques for TC activity	


•  High-resolution global dynamical models (e.g., GFDL-HiRAM)	


•  High-resolution regional dynamical models (e.g., GFDL-ZETAC)	


•  Statistical models (e.g., Freq = F(SST,shear,…) )	




The	  GFDL	  High-‐Resolu2on	  Atmosphere	  Model	  (HiRAM)	  
•  Non-hydrostatic Finite-Volume dynamical core on the cubed-sphere	  

•  Designed for resolution between 1‒ 100 km, capable of direct cloud 
simulation  

•  A PDF based 6-category cloud micro-physics with finite-volume vertical 
sub-grid reconstruction allowing vertically & horizontally sub-grid cloud 
formation 

•  A “non-intrusive” shallow convective parameterization (Bretherton 
scheme modified by Zhao et al. 2009) 

•  Options to couple with ocean and wave models  Slide: S-J Lin	




Geographical distribution of TC tracks (1981-2009) 

Observation 

HiRAM-C180 
AMIP simulation 

Zhao et al. (2009)	




Red/yellow = increase	

Blue/green = decrease 

Regional increase/decrease much larger than global-mean.	


Pattern depends on details of ocean temperature change.	


Sensitivity of response seen in many studies 
	
 	
e.g., Emanuel et al. 2008, Knutson et al. 2008, Sugi et al. 2010, Villarini et al. 2011, Knutson et al. 2013, etc. 

Adapted from Zhao et al. (2009, J. Climate) 

Response of  TC frequency in single 50km global atmospheric 
model forced by four climate projections for 21st century	




Use homogenized data and high-res models to build statistical 
models for exploration and projections	


When we consider the linear trend over two different
periods (2001–50 and 2001–2100) from the entire 12-
model suite, we do not find an obvious pattern across the
different radiative forcing scenarios. The large inter-
model spread in the various projections masks the ten-
dency for the multimodel average to show a slight
increasingly negative trend with increasing greenhouse
gas forcing. There are three main reasons that could
explain the very different outcomes from the different
models in these scenarios: internal (unforced) climate
variability within each model, differences in the pre-
scription and model response to nongreenhouse gas
forcings (e.g., aerosol, ozone, and changes in land use–
land cover), and differences in model description and
parameterization of the physical processes that lead to
different sensitivity to greenhouse gas increases. We
distinguish between the greenhouse gas and nongreen-
house gas forcings here in particular because the
greenhouse gas forcing is relatively consistent across the
different models, whereas the nongreenhouse gas forc-
ings are specified, and responded to, in substantially
different ways among the different models. Therefore,
similar patterns of response across the models would

suggest a dominant influence of the (common) green-
house gas forcing.
We attempt to provide a first quantitative description

of the relative contribution of each of these three com-
ponents. The relative impact of internal climate vari-
ability versus total response to climate forcing agents
was examined by computing the correlation coefficient
between the 12-model response vectors for three dif-
ferent scenarios (SRES A2, A1B, and B1). In other
words, we ask to what extent do the models that tend to
show relatively smaller/larger changes in one scenario
also show it in the other scenarios? If the pattern of
ordering of the trends across scenarios is inconsistent,
then we can infer that the spread is largely driven by
either unforced climate variations or by differences in
forcings and responses to nongreenhouse gas forcings.
Focusing on the 2001–2100 trends in SRES A2, SRES
A1B, and SRES B1 (Fig. 6 and Table 2), we obtain
correlation coefficients of the model response across
scenarios between 0.68 and 0.74, indicating that differ-
ences in the model response to total forcing in those
scenarios explain about half of the variance in the
tropical storm response, and with the remaining half
originating from the unforced climate variability and the
nongreenhouse gas forcing/response.
The importance of the internal variability is under-

scored by examining the variability in the slopes from an
ensemble of 10 different GFDL CM2.1 model runs for
the SRES A1B scenario that differ only in their initial
conditions (Fig. 5, middle panel): over the period 2001–
50, the variance for the 10 slopes is equal to 6.2, which is
about 42% of the variance exhibited by the 12 climate
models for the same scenario. Even though each model
has a different internal variability and the results for the
GFDL CM2.1 model cannot be generalized to all of the
other ones, from these estimates we speculate that close
to half of the variability in the results can be attributed to
internal variability. As a third more direct way to esti-
mate the impact of the internal climate variability of the
models on the linear trends, we have examined the
preindustrial control runs for all 12 models, resampling
the data, creating 1000 12-member sets of 100-yr linear
trends and comparing the spread of these to the spread
of the 3 scenarios. In this case, we estimate the internal
climate variability in the models as responsible for close
to 50% of the spread in the projections. Based on these
auxiliary calculations, we conclude that about half of the
variability exhibited by the different models in these
scenarios comes from internal climate variability, with
the rest due to differences in the specification of or the
response to radiative forcing.
To attempt to isolate the role of differences in non-

greenhouse gas forcings in these models on the spread

FIG. 4. Slopes of the regression lines for three periods (2001–
50, 2051–2100, and 2001–2100) for all the 24 available climate
models. These results are based on the projections for the twenty-
first century of the tropical storm counts for the North Atlantic
basin under the SRES A1B scenario, using both tropical Atlantic
and tropical mean SSTs as covariates in the statistical model
(based on the model constructed using NOAA’s ERSSTv3b da-
taset). The solid black curves represent the probability density
function for a Gaussian distribution fitted to the 24 climate
models (gray dots; the mean m and the standard deviation s are
included). In the box plots, the limits of the whiskers repre-
sent the 5th and 95th percentiles, the limits of the boxes repre-
sent the 25th and 75th percentiles, and the horizontal lines and
the squares inside the boxes are the median and the mean,
respectively.
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Projections of North Atlantic TS Count Trends	

Using Observationally-based Statistical Model 	


and SST Projected by 23 CGCMs	


Family of statistical models based 
on observed and high-res. model 
hurricane activity and SST.	

	

Use two predictors:	

-  Tropical Atlantic SST (positive)	

-  Tropical-mean SST (negative)	

	

Consistent with high-res dynamical 
models, understanding on controls 
to hurricanes & “cheap”.	


Rate = ea+bSSTATL!cSSTTRO

Knutson et al. (2008) Swanson (2008), Vecchi et al. 
(2008),  Zhao et al. (2009, 2010), Villarini et al. 
(2010, 2011.a.,.c), Villarini and Vecchi (2011)	


Villarini et al. (2011)	




Simple statistical model explains much of the spread 
across many high-res modeling studies	


Knutson et al. (2013, J. Clim.)	

See also Villarini et al. (2011, J. Clim.)	


Vecchi et al. (2008, Science)	


Differences in projected 
patterns of surface warming 
drive large uncertainties in 
hurricane projections	


Rate = ea+bSSTATL!cSSTTRO



Dynamical Projections of Atl. Hurricanes for end of 21st Century	


Adapted from Zhao et al. (2009, J. Clim.) and Held et al. (2013, submitted)	


CMIP3	
 CMIP5	


20
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Using GFDL-HiRAM	


+100%	


+50%	


-50%	


-100%	




GFDL-CM3 indicates aerosols key for NA TS projections���
(projected aerosol clearing -> more storms)	


Villarini and Vecchi (2012, Nature C.C.)	


All Forcing	

No future aerosol or O3	


No future aerosol	




Large-scale	

Global Climate Models -> High-Res Model -> Hurricane model	


TS Frequency	
 Intensity	


Multi-decadal projections	




Dynamical double downscaling for Atlantic: ���
Overall frequency decrease projected, ���

but more of the strongest storms 	


Adapted from Bender et al (2010, Science)	

see also Knutson et al. (2008, Nature Geosci.); Knutson et al. (2013, J. Clim., in press)	




Projections of reductions in atmospheric aerosols contribute 
to projected increases in Atlantic hurricane activity	


PDI = Umax
3

storms
!

Power Dissipation Index	


Villarini and Vecchi (2013, J. Climate)	

See also Knutson et al. (2013, J. Climate)	


!

Aerosols and GHG change	

Only GHG increases	




Historical aerosol forcing 
may have masked century-
scale greenhouse-induced 
intensification in Atlantic	


PDI = Umax
3

storms
!

Power Dissipation Index	


Villarini and Vecchi (2013, J. Climate)	




Seasonal Hurricane Prediction	


•  What can we say about the character of the upcoming 
hurricane season months or seasons in advance?	




• 25km HiRAM Seasonal hurricane predictions – initialized July 1	


• 1990-2010 (Jul-Nov)	


0.94	
0.78	


0.88	


Resolution: 25 km, 32 levels 	


•   5-members initialized on July 1 with 
NCEP analysis	


•  SST anomaly is held constant during the 
5-month predictions	


•   Climatology O3 & greenhouse gases are 
used	


1.  Chen and Lin 2011, GRL 	

2.  Chen et al., submitted	




Merge multiple tools and understanding to build experimental long-lead 
hurricane forecast system: skill from as early as October of year before	


Hi-Res AGCM in 
many different 

climates. ���
Count storms.	


Build statistical model 
of the response of 

hurricanes in HiRAM	


Use initialized coupled 
model to forecast 

future values of SST	


Apply Stat 
model to 
Predicted 

SST	


Make Prediction 
of Full PDF of 

Hurricane Activity	


Initialized January: r=0.66	


Vecchi et al. (2011); Villarini and Vecchi (2012, submitted)	


April & onward 
forecasts fed to 
NOAA Seasonal 
Outlook Team	


http://gfdl.noaa.gov/HyHuFS	


HyHuFS	




But, current computing power limits ability of ���
coupled global climate models to represent hurricanes	


Hurricane Rita (2005): 
orange grid is 

representative of most 
current coupled global 

climate model resolution.	


Size of grid limited by 
power of computers.	




Resolution (computer power, good models & hard work) 
can help represent processes and phenomena	


Medium���
resolution ���
(CM2.1)	


High ���
resolution	

(CM2.5)	


Precipitation	
 Ocean temp.	


Adapted from Delworth et al. (2012, J. Clim.)	




Response of TCs in high-resolution global coupled model ���
(GFDL CM2.5, Delworth et al. 2012, J. Climate; Kim et al. 2013 in prep.)	
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Figure 1. Tropical cyclone tracks for 50 years of (a) observations (IBTrACS, 1960–2009) and (b) 

model simulations (CM2.5, 91–140). Boxes denote the sub regions. 
 
 
 
 
 

 
 
Figure 1. Tropical cyclone tracks for 50 years of (a) observations (IBTrACS, 1960–2009) and (b) 

model simulations (CM2.5, 91–140). Boxes denote the sub regions. 
 
 
 
 
 

Observed Tracks	
 Coupled Model Tracks	


CM2.5 Tropical storm density response to CO2 doubling	


Fewer storms	


More storms	




Key uncertainty sources to projections of decadal TS activity	


Sources of uncertainty (after Hawkins and Sutton, 2009)	

•  Variability: ~independent of radiative forcing changes	

•  Response: “how will climate respond to changing GHGs & 

Aerosols?”	

•  Forcing: “how will GHGs & Aerosols change in the future?”	


Villarini et al. (2011), Villarini and Vecchi (2012)	


Tropical Atlantic SSTA	
 NA TS Frequency	




Simulated Atlantic Sea Surface Temperature	

(based on GFDL CM2.1)	


Ensemble mean	


Individual ensemble members	


Can we predict the 
trajectory of Atlantic 

temperatures over the 
next several decades?	


	

How about hurricane 

activity?	


Slide: Tom Delworth (GFDL)	




Decadal/multi-year prediction: New efforts focused mixed ���
                                              initial/boundary value problem	


Climatology ���
(what happens typically, including randomness)���

need good observations	

Evolution of initial conditions ���
(e.g., weather or El Niño forecast)���

need good observations, models, initialization schemes	

���

Climatology 	

Climate response to forcing ���

(e.g., CO2, aerosols, sun, volcanoes)���
need good models and estimates of forcing	


Sources of & Limitations on climate predictability	
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Experimental decadal predictions���
Hybrid system: statistical hurricanes, dynamical decadal climate forecasts	


•  Retrospective predictions encouraging.	

•  However, small sample size limits confidence	

•  Skill arises more from recognizing 1994-1995 shift than actually predicting it.	

•  This is for basinwide North Atlantic Hurricane frequency only.	


Vecchi et al. (2013 in press), see also Smith et al. (2010, Science)	


EXPERIMENTAL: NOT OFFICIAL FORECAST	


FORCED	
 FORCED & INTIALIZED	




Experimental decadal predictions���
Hybrid system: statistical hurricanes, dynamical decadal climate forecasts	


•  Retrospective predictions encouraging.	

•  However, small sample size limits confidence	

•  Skill arises more from recognizing 1994-1995 shift than actually predicting it.	

•  This is for basinwide North Atlantic Hurricane frequency only.	


Vecchi et al. (2013 in press), see also Smith et al. (2010, Science)	


EXPERIMENTAL: NOT OFFICIAL FORECAST	


FORCED	
 FORCED & INTIALIZED	


This predicted sharp increase is 
likely an artifact of increasing 
quality of observations – model 
bias induces “drift”.	




Removing observational inhomogeneity removes post-2004 upswing: 
need stable, sustained observations 	


Vecchi et al. (2013 in press)	




Experimental decadal predictions���
Hybrid system: statistical hurricanes, dynamical decadal climate forecasts	


Vecchi et al. (2013 in press); Msadek et al. (2013, submitted)	




Summary	

•  Premature to conclude we have seen hurricane change due to CO2	


•  Models allow estimates of future activity:	

•  Next couple of decades: internal variability dominant player���

                (some may be predictable, some not)	


•  NA Hurr. Response to CO2: maybe fewer, probably stronger.	


•  Aerosol forcing and response a key to next few decades.	


•  Encouraging results from long-lead (multi-season and multi-year) 
experimental forecasts using hybrid system: ���
	
 	
“past performance no guarantee of future returns”���

 	
 	
but good past performance nice start…	


•  High-resolution coupled and atmospheric models enable the next 
generation of hurricane prediction and projection.	
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